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Abstract—NASA's space missions Dawn and JIMO will paper the problem of designing low-thrust orbit transfers b
use low-thrust propulsion for multi-revolution orbit trgfers ~ tween arbitrary initial and final orbits in an inverse-saquar
around a central body. Here we address the problem of degravity field. We couple the Q-law, which is a Lyapunov
signing low-thrust orbit transfers between arbitrary telim  feedback control law developed by Petropoulos [3][4], with
an inverse-square gravity field by using evolutionary algo-evolutionary algorithms to select parameters in the Q-law.
rithms to drive parameter selection in a Lyapunov feedback

control law (the Q-law). We develop an efficient and effica-1t has been demonstrated that the Q-law, with a reason-
cious method to assess, with reasonable accuracy, the tradble set of control parameters, efficiently finds approxenat
off between propellant mass and flight time (i.e., to find thePareto-optimal solutions (i.e., a propellant-optimalsioh
Pareto front for these two quantities), and to provide thneti  for a given flight time or a flight-time-optimal solution for a
history of the state variables and the thrust vector for dno¢ ¢ given propellant requirement) [3][4]. On the other hand, a
sen point on the Pareto front. grid sampling of the Q-law parameters suggests that a bet-
ter solution can be found if optimized Q-law parameters are
used [4]. Finding an optimal set of the Q-law parameters
for all possible orbit transfers is analytically impossifzsind

can be computationally expensive without good heuristic al
gorithms. There is no guarantee that a single set of the Q-law
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1. INTRODUCTION compared with optimal solutions from the literature, where

. ) these are available.
NASA's future space missions Dawn and JIMO will use elec-

tric propulsion for inter-planetary cruise and orbital ope 2. Q-LAaw

tions. The strength of electric propulsion is that desp#e i )
low thrust levels, the momentum transfer to the spacecrafl "€ Q-law was developed by Petropoulos [3][4] in order to

per kilogram of expelled propellant is ten or twenty timesProvide good initial guesses for propellant-optimal ldwrist
greater than for chemical propulsion. However, the comtfol Orbit transfers. The Q-law determines when and at what an-
continually-thrusting, low-thrust spacecraft poses dlehg- ~ 9€s to thrust based on the proximity quotient tergedrhe

ing design problem, particularly for orbit transfers ardun function@ judiciously quantifies the proximity of the oscu-

a central body. Third-body perturbations and perturbation [ting orbit to the target orbit. In the Q-law, the centratlyo
from non-spherical mass distributions in the central boy o IS Modeled as a point mass, and no perturbing forces are con-
ten dominate the thrust. Yet even without these perturbafio sidered. We summarize in the remainder of this section the
where only a simple inverse-square gravity field is considQ-law from Ref. [4].

ered, low-thrust orbit transfers are particularly chatjiery to : )

design due to the large number of revolutions around the cenl-N€ Q-law consists of two main control rules. 1) The Q-law
tral body and the difficulty of selecting thrust directionsla €ho0ses the thrust angles which red@emost quickly at the
thrust arc locations. Such transfers have been studiedst le Currentinstant. 2) The Q-law determines whether to thrust o
since the 1950s [1][2]. While the ultimate goal may be to in-c0ast according to a given thrust effectivity threshglg, <
clude the full gravity field, as a first step we address in this
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[0, 1] as follows: The scaling function is used primarily to ensure convergenc
to the target orbit and takes the form

ming,
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whereQ is the time rate of change 6f, « and3 are the thrust  wherem, n, andr are scalars. The distance function is de-
angles (more specifically, the azimuthal and elevationemgl fined as

of the thrust with the pole being given by the osculating or-

bital angular momentum), andlis the true anomaly of the

osculating orbitmin, 5  is the minimum ofQ) overa and ~ 4(®%r) =

/3 at a giverd, whereasnin, s ¢ Q is the minimum ofQ over

O"lﬂ’ anéie.ﬁThgg,ncu]E 'i a T}andle to control lthe Im|n|mum where the principal value, namely with[f, 7], is used for
tolerated effectivity of the thrust. In general, a larges; . the arc cosine. The specific form of the distance function
Igads to a smaller propellant mass used and a longer flight,. , ang is used because it provides an angular measure
time. of the distance between two positions on a circle using the
o , . “short way round” the circle, because it is differentiabliéhw

In some situations, thrust on-off jitter occurs if Egs. (1) respect tace[except whend(ce o) — 7], and because the

and (2)_are followed str ictly. These situations arise ag tru sign of the derivative indicates whetherleads or lagser
anomalies where thrusting would reduce the effectivityilevh based on the short way round

coasting would increase it. The jitter is eliminated by irspo
ing a minimum thrust-arc length, typically just a few degree As shown above, the Q-law specifies the general form of

the proximity quotienty and the general rules for optimal
thrust angles and thrust-arc locations. However, to mainta
a certain degree of flexibility, the Q-law involves a set of
internal parameters or weights which can be set by a mis-

ion designer to specific values. The set is composed of

cuty Way We, Wi, W, Wa, Wp,m, n, 7, 7ymin, k. As dis-

ssed in Sec. 4, these parameters have nominal values that

should allow the Q-law to perform reasonably well for most
orbit transfers. The goal of the evolutionary algorithmsois

The proximi_ty quotienQ, Whi.Ch Serves as a candidate Lya- finq Pareto-optimal parameter sets for any given orbit feans
punov function in the Q-law, is defined as follows:

oe— cer force=a,e,i
(6)

cos™ ! [cos(oe— oer)] for ce= w,

Orbit propagation is done by numerically integrating Gauss
form of the variational equations for the orbit elements|[13
using a 3"-6'"-order Runge-Kutta-Fehlberg algorithm. At
each integration step, the Q-law provides an indication o
whether to apply thrust or not, and, if so, in which direction
The thrust, when on, and the specific impulse are assum
constant.

problem.
d(og oer)]?
Q= (1+WpP)ZWoeS‘oe[.7} 3. Q-LAwW OPTIMIZATION WITH
e G EVOLUTIONARY ALGORITHMS
for = a,e,i,w, . 3)

Mathematically, the Q-law parameter optimization problem

The five orbital elementsd are the semimajor axisi), ec- IS expressed as
centricity (), inclination ¢), argument of periapsissj, and

longitude of the ascending nod®) Wp and thelWge are minimize y = {ts(x),mp(x)} €Y, )
scalar weights greater than or equal to zero; the subsEript where x = {W,, W, W, W,,, Wq, Wp,
denotes the target orbit element value (without subsdtipt,
osculating value is indicated)g, denotes the maximum over

thrust direction and over true anomaly on the osculating orb Here,x is the Q-law parameter vectar,the objective vector
of the _rate of change of the orbit elgment (due to thru§t). ThegiVen by the required flight timet ) and the required pro-
analytical expressions fdg, are available in Ref. [3]P is a pellant massrf,,) for a given orbit transferX the decision
penalty function;Sceis a scaling function; and(ce cer) isa  gpace, and’ the objective space. We add one more parame-
distance function. The penalty function is used in the prese tgr tg the decision space; the initial true anom@lywhich is
paper to enforce minimum-periapsis-radius constraints anNnot a Q-law parameteer se but a mission-design parameter.
takes the form One decision vectax; leads to one candidate trajectory with
r a final fight time and a consumed propellant mass, that is, an
P =exp {k (1 T p, )} 4) objective vectoly;. In the following paragraphs, we will de-
pmin scribe how the optimization problem is solved with two evo-
wherek is a scalary, is the osculating periapsis radius, and lutionary algorithms: a genetic algorithm and a simulated-
Tpmin IS Near or equal to the lowest permissible value.of  annealing algorithm.

m,n,r, Tpmina ka Tlcut, 91} € X (8)




Genetic Algorithm by weighting the objectives with a weight vector. How-

Genetic algorithms (GA), first introduced by John Holland over, this process tends to I_gad o a subgroup of Pareto-
gptimal solutions that is sensitive to the weight vectorduse

and his colleagues [5], are search algorithms based on the mg o :
. ; : Ih the weighting process. In contrast, the nondominateid sor
chanics of natural selection and sexual reproduction. GAs a

theoretically and empirically proven to provide robustrsba ing process equally encourages all nondominated solutions
y P yp P to survive [12]. The nondominated sorting genetic algo-

i_n qomplex SPaces. Furthermore, they are not fundamel ntallPfthm (NSGA) was shown to be superior [6] to other multi-
limited by restrictive assumptions aboutthe search s s objective evolutionary algorithms such as the vector evalu

as continuity and existence of derivatives. ated genetic algorithm (VEGA) [7], the niched Pareto geneti

The standard GA proceeds as follows. A possible solutioﬁ?ﬂgomhm (NPGA) [8], and the multi-objective genetic algo

of a given problem is encoded as a finite string of symbolsrlthm (MOGA) [9]. Hence, we apply NSGA to optimize the

known as the genome. An initial population of the possibIeQ'laW parameters.

solutions called individuals is generated at random orikeur

. : The nondominated sorting proceeds as follows. First, the
tically. At every evolutionary step, known as a generattha,

nondominated individuals in the current population areide

individuals in the current population are decoded and evalu,. .. . . ; : .
ated according to some predefined quality criterion, reterr t|f|e_d as described n the_ Appendix. '_I'he_ same f|_tness value is
' assigned to all the individuals constituting the first namdo

to as the fitness. To form the next generation, parents are se-

; - . mated front. The individuals are then ignored temporarily
lected according to their fitness. Many selection proceslure o ;

. : . .. “and the rest of the population is processed in the same way to
are currently in use, one of the simplest being Holland'g-ori

) : i g LI identify a new set of nondominated individuals constitgtin
inal fitness-proportionate selection, where individuaésse- : : .
; . . ; o the second nondominated front. A fitness value that is smalle
lected with a probability proportional to their relativeniéss. : . . o
: . ... than the previous one is assigned to all the individuals ef th
This ensures that the expected number of times an individ- . ; . .
; . ) . : . second nondominated front. This process continues umtil th
ual is chosen is approximately proportional to its relatiee- L e .
) . o o whole population is classified into nondominated fronts.
formance in the population. Thus, high-fithess individuals
stand a bgtter chance of reproducing, while low-fitness Oone§, - iated Annealing
are more likely to disappeatr.
Simulated annealing (SA) is a widely used and well-
The parent selection process is followed by genetically-established optimization technique especially for high-
inspired operators to form offsprings. The most well knowndimensional configuration spaces [10][11]. The goal is to
operators are crossover and mutation. Crossover is pezfbrm minimize an energy or fitness functidi (in our case, the
with probability p...ss between two selected parents, by ex- required flight time and propellant mass), which is a func-
changing parts of their genomes to form two offsprings;sn it tion of IV variables (in our case, the Q-law parameters), with
simplest form, substrings are exchanged after a randomly séV being a large number. The minimization is performed by
lected crossover point. This operator tends to enable thre evrandomly changing the value of one or more of fkievari-
lutionary process to move toward “promising” regions of theables and reevaluating the energy functidnTwo cases can
search space. The mutation operator is introduced to prevenccur: 1) the change in the variable values results in a new,
premature convergence to local optima by randomly samplingpwer energy function value; or 2) the energy function value
new points in the search space with some probalbyility;. is higher or unchanged. In the first scenario the new set of
Genetic algorithms are stochastic iterative processésatha variable values is stored and the change accepted. In the sec
not guaranteed to converge. The termination condition mapnd scenario, the new set of variable values is only stored
be specified as some fixed, maximal number of generationsith a certain likelihood (Boltzmann probability, incluwdj

or as the attainment of an acceptable fitness level. an annealing temperature). This ensures that the overall op
timization algorithm will not be trapped in local minima too
Nondominated Sorting easily as is the case with greedy downhill optimization. As

The standard GA require a ranking/evaluation scheme irt1.he annealing temperature decreases in the course of the op-

i . . timization process, an energetically unfavorable stepss |
the process of fithess assignment, which depends on opy . .
NN o —Tkely to be accepted (cooling schedule). The procedure is
timization problems. Optimizing the Q-law parameters is . )
S Lo repeated until the annealing temperature has reacheddts en
a multi-objective optimization problem, because both pro- . ;
) ; L value, a preset number of iterations has been exceeded or th
pellant masses and flight times need to be minimized. In .
i . . energy function® has reached an acceptable level,
such a problem, there may not exist one solution that is
best with respect to all objectives. Therefore, the goal of
the multi-objective optimization problem is to determihe t
trade-off surface, which is a set of nondominated solutioriThe parameters of the Q-law are optimized by GA and SA
points known as Pareto-optimal or non-inferior solutions.for five different types of orbit transfers. Table 1 lists the
A conventional way to solve multi-objective problems is tial and final orbit elements, thrust characteristics, speatft

to transform the original problem in a single-objective one initial mass, and central bodies associated with the fivé orb

4. ORBIT-TRANSFER RESULTS



Table 1. Initial and final orbit elements, thrust characteristsggacecraft initial masses, and central bodies associatedhe
orbit transfers studied in this paper. The orbit elemergggaren by the semimajor axis), the eccentricityd), inclination ¢),
argument of the periapsig), and longitude of the ascending nod® (The true anomaly) is left free for both the initial
and final orbit.

Case|| Orbit a e i w Q | Thrust  Specific Initial Centra

(km) (degree) (degree) (degree) (N) Impulse (s) Mass (kg) Body

A Initial 7000.00 0.010 0.050 0.0 0.00 1 3100 300 Earth
Target| 42000.00 0.010 free free free

B Initial 24505.90 0.725 7.050 0.0 0.0D 0350 2000 2000 Earth
Target| 42165.00 0.001 0.050 free free

c Initial 9222.70 0.200 0.573 0.0 0.00 93 3100 300 Earth
Target| 30000.00 0.700 free free free

D Initial 944.64 0.015 90.060 156.9 -24.60 0.045 3045 950 Vesta
Target 401.72 0.012  90.010 free -40.7B

E Initial 24505.90 0.725 0.060 180.0 180.00 5 2000 2000 Earth
Target| 26500.00 0.700 116.000 270.0 180.00

transfers termed case A, B, C, D, and E. These cases cdier is complex. For each case we present the computation
respond to those in [4], except that for case E the plane dime needed to generate the Pareto front, and, where possi-
the initial orbit is changed by 0.12 degrees. The gravitetio ble, compare this to the times needed to obtain the optimal
parameter for the orbit transfer around the Earth is set to beolutions reported in the literature.
398,600.5 kms~2, while that for Vesta is 17.8 kis~2. As
is customary with the classical orbit elements, values of ze The nominal Q-law used/ge= 1 for orbit elements with tar-
are not used for the eccentricity and inclination on accounget valuesiWge = 0 for orbit elements without target values,
of the singularities present in Gauss’s form of the varisgio andm = 3,n = 4,r = 2 for the scaling function of the
equations. The orbit transfers range from the simpler, hersemimajor axis. The penalty function to enforce minimum-
few elements have target values, to the more complex, whengeriapsis-radius constraints is applied only for case DE&nd
not only do all elements have target values, but also whererbit transfers. The penalty function of the nominal Q-law
temporary, large sacrificial changes must be made in somaseslV,, = 1, k = 100, andr,min = 300 km for case D and
elements to change more effectively other elements, uhtil ar,min = 6578 km for case E. The Pareto front of the nominal
elements converge on their target values. Recall that ezeff Q-law is acquired by varying the thrust effectivity threkho
an orbit transfer, the Q-law not only provides thrust angles).,. € [0,1] and the initial true anomaly; € [0,2x]. In
but also an indication of whether to thrust or coast. Thuspoth the nominal Q-law and the optimized Q-law, a minimum
the Q-law can examine the trade-off between propellant maghrust-arc length of 10 degrees is imposed, measured in true
and flight time: To obtain short flight times, more propellantlongitude(6 + w + 2).
must be used, while when longer flight times are allowed, the
required propellant mass is reduced. As the permitted flighThe GA optimization uses the following GA parameters: the
time increases, eventually there are diminishing retunrtde  population sizeV,, = 1000 for case A, B, C anadV,, = 2000
saved propellant mass, and so the flight time will typically b for case D and E, the number of generatidiis= 100, the
capped at some large-enough value for each of these transfepopulation replacement rajg. = 0.1, the crossover prob-
ability p. = 0.8, the mutation probabilitp,, = 0.3. The
The Pareto fronts (in propellant mass and flight time) ob-relatively high mutation rate is chosen to preserve therdive
tained with the optimized Q-law are compared with those obsity of the population. Each Q-law parameter is represented
tained with the nominal (unoptimized) Q-control law. Fur- as a real-valued gene. The fitness of each individual is as-
thermore, for cases A, B, C, and D, we assess how well theigned according to the nondominated sorting as descnibed i
Pareto front of the optimized Q-law matches the performanc&ec. 3. Possible parents are selected by tournamentdie., r
of individual optimal transfer trajectories reported ietlter-  domly pick two individuals and choose the one that is better
ature, computed using optimal control techniques (i.ehwit fitted). The crossover is performed by choosing one point in
out the imposition of a feedback control law). Due to thethe gene string at which the two strings are crossed. The mu-
difficulty of the optimal control problem, there is a dearth tation is performed by randomly choosing a gene in the string
of optimal, many-revolution orbit transfers in the litared,  according to the mutation probability and resetting theegen
especially when coast arcs are involved or when the trangandomly within a given range.



The SA optimization uses as its fitness function the sum ofer with the lowest propellant mass has a flight time of about
the consumed propellant mass and the flight time. The de230 days, even though the maximum-permitted flight time is
sign of this fitness function results in an approximatelyaqu 500 days. The distance from the flight-time cap is due to the
optimization of both the consumed propellant mass and théact that the propellant mass is already very close to its min
flight time. Thus, a complete Pareto front cannot be expecteanum value, and that beyond about 250 days, the flight time
from this fitness function. By replacing the flight time in the becomes very sensitive to the value)gf;, making it difficult
fitness function with the relative difference between the cu to populate the Pareto front beyond this flight time.

rent flight time and a specified flight time and by varying the

specified flight time, one can obtain a complete Pareto frontOne of the limitations of the nominal Q-law for this trans-
The SA optimization runs on a single processor, but it can béer is that the nominal Q-law excludes a subgroup of Pareto-
trivially parallelized by deploying N specified flight times  optimal solutions. As shown in Fig. 1, the nominal Q-law

a cluster of N processors. provides two families of Pareto-optimal solutions: one for
short flight times {4 < ¢y < 17) and the other one for long
Case A Orbit Transfer flight times (t; > 140). No solutions are found for the in-

termediate flight times1( < ty < 140). In contrast, the

Case A is a simple coplanar, circle-to-circle orbit transfe - . . )
: . . o GA-optimized Q-laws lead to Pareto-optimal solutions in a
from low Earth orbit to geostationary orbit. No periapsisa€o . . : . S .
wide range of flight times without any significant gap. This

straint is imposed during the transfer, as the natural dynam_ . .
. o . . indicates that some Q-law parameters besiggs strongly
ics does not decrease the periapsis altitude. The maximunlee o oo ctories to be taken
permitted flight time is 500 days. Figure 1 shows the Pareto ) '
front obtained with the n_oml_nal Q-law and the opt|m|zeo! Q'To show which parameters are important in determining the
law. Note that each solution in the Pareto front for the optim : : . .
X : . : trajectory pattern, we investigate a correlation betwden t

Q-law is obtained with a different set of Q-law parameters. .. . ;

S . optimal parameters and the flight time (or the propellant
As shown in Fig. 1, the GA Pareto front dominates the Pareto :
front given by the nominal Q-law, mas_s). While other Q-law parameters do not show much cor-

) relation, the optimal sefiW,,, W, 7.t} Show a strong cor-

The Pareto-optimal solutions found by GA and SA are COm_relatlon with the flight time, as shown in Figure 2. For ex-

. ) . . ample, the trajectory with flight time 50 days can be found
pared with two analytical solutions that approximately hdu only with 1V, — 55%, W, = 45% andr.y, — 0.84, while

fer. The Edelbaum transfer provides an approximate Iowe?rhe rest of Q-law parameters can vary widely yet yield com-

limit for the required flight time [2], while the Hohmann parable performance. This sensitivity/correlation agialpe-

. P . tween the Q-law parameters and the resulting trajectory sug
transfer [13] sets an approximate lower limit for the reqdir ) _— .
propellant mass. The Edelbaum transfer is a continuou@es’tS that the Q-law can be effectively optimized by varying

thrust, minimum-time transfer based on orbit averaginge Th only {Wa, We, feut }
Hohmann transfer utilizes two thrustimpulses, that is, itwo . .
. . . We present examples of the three families of trajecto-
stantaneous large changes in velocity each without change I, ~ ! ) i . . ;
. ) ) : ; , ries in the Pareto front: for flight-time optimal solutions,

position. Applying thrust impulsively is much more efficten . . : ; .

A X : propellant-optimal solutions, and intermediate-fligihte so-
than applying it continuously over an orbit, and so the pkope | . . g )

. : lutions found by the optimized Q-law. The flight-time-

lant required for the Hohmann transfer (assuming the thrust . . . : L .

oo : optimal trajectory is roughly a circular spiral, increasgithe
can be arbitrarily large) is much less than that needed for co L ) : R .
. . semimajor axis while maintaining the eccentricity close to
tinuous thrust. In the case of low thrust, these large vloci

N .~ zero, as shown in Figs. 3 and 6. The propellant-optimal

changes can be accumulated gradually by utilizing a sefies g . . : o
L rajectory takes quite a different form, maintaining thensa

small thrust arcs. As these thrust arcs become infinitesimal

size, the propellant requirement will converge to that eeled periapsis until the apoapsis radius slightly surpassetathe
for tr’]e Hohmann transfer get value, and then increasing the periapsis radius to hear t

target value, before finally driving both periapsis and gpoa

. . . ; . sis radii to their target values, as shown in Figs. 4 and 6.
When the Q-law optimized with GA is used, the flight-time- As expected, the intermediate-flight-time trajectory, veho

optimal solution is about 0.04 days away from the lower limit:

of the flight time (14.42 days), and the propellant-optineal s :—:n??ﬁés ?:deﬁéft-i t:iymbgldt:);glgte;?egheir:g?:;;[:rr?e t(;[;t_lmal
lution is about 0.14 kg away from the lower limit of the pro- prop P ) ' 9 b

I .~ _apsis and apoapsis simultaneously. The trajectory ilyitial
pellant mass (34.97 kg). In contrast, the flight-time Optlma'ncreases both the eccentricity and the semimajor axis, and

solution found by .the nomlr_1al Q-Iaw is 0.11 days away, anc|ater reduces the eccentricity while continuing to incesthe
the propellant-optimal solution is 0.82 kg away. This compa semimajor axis

ison clearly shows that the optimization of the Q-law with GA
essentially matches the theoretical flight-time and piapél :

bounds, having improved the Pareto front of the nominal Q_CaseB Orbit Transfer

law by about 0.6% in minimum flight time and about 1.9% Case B is a transfer from a slightly-inclined geostationary
in minimum propellant mass. The optimized-Q-law trans-transfer orbit to geostationary orbit. The maximum-petaoit
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flighttime is 1500 days. Figure 7 shows the trade-off betweerCase D Orbit Transfer
propel_lant-mass and flight-time for th's. transfer, "? compa  ~ase Dis roughly a circle-to-circle orbit transfer arouhd t
son with the Pareto front generated with the nominal Q-law, : : . .

: : - asteroid Vesta, involving a small plane change. The flight
the improvement of the Pareto front with the optimized Q-law,. ; .
. ) ) . . ime is capped at 300 days. Figure 11 shows the trade-
is dramatic. A propellant savings of about 5-15% is achleve(i)ﬁ between provellant mass and fliaht time for this trans-
with the optimized Q-law. To verify the quality of the im- prop 9

L7 : fer. The Pareto front of the nominal Q-law is obtained by
proved Pareto front, we compare it with the two optimal tra- . -
. . . X varying the thrust effectivity thresholg.,.; € [0, 1] and the
jectories found by Geffroy and Epenoy using an orbit averagi,itial true anomalyy; € [0,2x]. The Pareto fronts of the
ing technique [14]. The inset of Fig. 7 shows that our Pareto- Wi o

optimal solutions are as good as the solutions found by Gef-GA thlmlzed Q-law are generatgd n th_ree d'ﬁeref‘t ways:
the first Pareto front (GA Q-law I) is obtained by optimizing
froy and Epenoy.

{Wa, We, Wi, Wa, Neus, 05 }, the second Pareto front (GA Q-

An analysis of the correlation between the optimal Q—Iawlaw Il) by optimizing {Wa, We, Wi, Wa, feut, 0, m, n, 1},

: . . A and the third Pareto front (GA Q-law IIlI) by optimizing
parameters and the flight time is shown in Figure 8. The{W W W 0, W k). In compari-
dense populations of optim&/, around 10%, optimalV, . .;’ h“%“t’. “Im’ri’r’ r’:’rpm'”’ - d Ip )
around 20%, andiV’; around 70% show that the nominal Q- son with the nomina Q-law, the GA optimize Q.' aw im-
law (W, = W _ V[;-) is not an optimal choice. As expected proves an estimation of the Pareto front for all the flightaim
the thrust effectivity thresholgl.,,; is the important parameter conS|dere_d. TheIGA opt|m|zoed Q-law Ieads_ to Ia pr:opellant
to control the flight time. Other Q-law parameters, (., r) Mass savings as ‘arge as 16%. Mo_re_prom|smg Y, the Pareto-
and the initial true anomaly)() show a weak correlation with optimal solutions found with the optimized Q-law are as good

the flight time, indicating that these parameters are notias ¢ i(s)nttr:gl Z?Il;trli?r?rgglégzeb dyirYVI\;] |fgeﬂr(1: Flsé??l;r]]e static/dynamic
ical asW,, W., W;, andn., in the Q-law optimization. 9 y '

Among the three GA optimization schemes described above,
GA Q-law Il and GA Q-law Il outperform GA Q-law | but
Case C is a transfer from a low-eccentricity elliptic orbit the difference between GA Q-law Il and GA Q-law Il is
to a coplanar, high-eccentricity, larger elliptic orbititva  insignificant. This result indicates that the trajectoryeslo
maximum-permitted flight time of 20 days. Figure 9 showsnot depend strongly o§Wp, rpmin, k} (the parameters of
the trade-off between propellant mass and flight time forthe penalty function for the minimum periapsis constraint)
this transfer. The Pareto front for the nominal Q-law is ob-and thus an accurate Pareto front can be obtained by opti-
tained by varying the thrust effectivity threshajd,; € [0, 1] mizing only {W,, W., W;, neut, 0;, m,n,r}. The difference
and the initial true anomaly; € [0,2x]. The Pareto front between the Pareto fronts generated by GA Q-law | and GA
for the GA optimized Q-law is generated by optimizing Q-law II (or Ill) becomes smaller as the flight time becomes
{Wa, We, m,n, 7, ncus, 0; }. The GA optimized Q-law pro- longer. This sheds some light on the effect of the Q-law pa-
vides a better estimation of the Pareto front than the nomirameters{m, n,r} on the Q-law performance. The parame-
nal Q-law particularly for short flight times. For longer fiig  ters{m,n,r} are introduced for the scaling function in the
times, the Pareto front of the nominal Q-law is truncated asemimajor axis to ensure the convergence of transfers which
a flight time of about 5.3 days due to the minimum thrust-involve an increase in the semimajor axis. However, the semi
arc length constraint — when this constraint is removed, thenajor axis steadily decreases in this orbit transfer, ssiijug
Pareto front of the nominal Q-law is improved and closelythat the scaling function is not needed. Therefore, it isgore
follows the optimized Q-law front. Several solutions found able to select a parameter get, n, r} that yields the small-
with the optimization tool Mystic are plotted for companiso est possible modification to the distance function.
Mystic uses the static/dynamic control algorithm [15] [16]
The comparison shows that the Pareto front generated by thEhe optimal Q-law parameters found with GA are plot-
optimized Q-law is as good as the Mystic solutions. ted with respect to the flight time in Figure 12. Op-
timal W,, W,, W;, Wq are normalized to make the sum
The optimal Q-law parameters found by GA are plotted withto be 100%. The Q-law optimization shows a greater
respect to flight time in Fig. 10. The optim#l,, W, and  correlation for{W,, W, W;, Wa, ncut, 6:, m, n, r} than for
Neut are strongly correlated to the flight time, while other Q- {W),, r,min, k}. This explains the similarity between the
law parameters show a weak correlation. In general, flightPareto front generated with GA Q-law Il and the Pareto front
time-optimal solutions hav®’. /W, > 1, while propellant- generated by GA Q-law IlI. As in other transfers, this tramsf
optimal solutions havéV./W, < 1. This means that shows a strong correlation betwegn; and the flight time.
the flight-time-optimal solutions emphasize the ecceityric However, the correlation does not follow the monotonous
target while the propellant-optimal solutions emphasiee t trend that a largen.; leads to a longer flight time. The opti-
semi-major axis target. mal 7., shows a discontinuity around a flight time 60 days.
The discontinuity also appears in other optimal Q-law param
eters such a®/,, W,., Wq. This indicates that the pattern of
the trajectory changes around this flight time.

Case C Orbit Transfer
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Figure1l. Case D: Trade-off between propellant  Figure12. Case D: Optimal Q-law parameters found with GA with
mass and flight time. The Pareto fronts are respect to the flight time. The overall distribution of theioyal
obtained with the nominal Q-law and with the parameters shows that the Q-law performance is more sengitthe
Q-law optimized with GA. A flight-time optimal choice of{W,, We, Wi, Wa, neut, 0, m, n, v} than{Wp, rpmin, k }.
solution is found by the Q-law optimized with
SA. A Pareto-optimal solution found by Mystic is
also plotted for comparison.
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Figure13. Case D: Orbit elements as a function of time for a Paretaryadtrajectory with flight times 58 days (just below the
discontinuity point of the optimaj..; shown in Fig. 12) and 62 days (just above the discontinuitptp.oA large difference in
the time history of the eccentricity between the two trajees is observed, while other orbit elements show littféeedénce.
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To understand the cause of the discontinuity of the optimament interacts with other orbit-element changes. Figure 16
Q-law parameters, we examine the trajectory for a flight timeshows the time history of each orbit element for four differ-
just below the discontinuity point (T1) and that for a flight ent Pareto-optimal trajectories found by GA Q-law IIl. For
time just above the discontinuity point (T2). Figure 13 skow the all four trajectories, the plane changes (i,e:, 2) occur

orbit elements as a function of time during the orbit trans-when the semimajor axis nearly reaches the maximum values,
fer. The two trajectories show a significant difference ia th and the increase of the semimajor axis is accompanied by an
time history of the eccentricity, while other orbit elem&nt increase of the eccentricity. This behavior stems from the
(a,1,w, 2) show a small difference. T1 keeps the eccentricityorbit-transfer energetics, in which the larger apoapsifusa
close to zero all time, but T2 shows a large increase and ddt.e. larger semimajor axis and larger eccentricity) rexfitbe
crease of the eccentricity during the orbit transfer. Tréad  cost of the plane change in terms of propellant consumption.
is similar to that observed in Case A, where the circulardpir

trajectory (Edelbaum-type transfer) is flight-time optlmad ~ Figure 16 also unveils a general trend in orbit-element
the elliptic trajectory (Hohmann-type transfer) is prdaet  changes with respect to the flight time. The trajectory with
optimal. The two types of trajectories can be obtained witha longer flight time involves a larger change of the semima-
the Q-law by either emphasizing the eccentricity targetodr n  jor axis and a later start of the plane change. For example,
This result is also observed in the distribution of the opfim the shortest-flight-time trajectory (the solid line) extsban

W, in Figure 12. The optimall’, is greater for short-flight- early start of the plane change as the semimajor axis peaks

time solutions than for long-flight-time solutions. at 50,000 km. In contrast, the longest-flight-time trajegto
(the line with circles) shows almost no plane change ungil th
Case E Orbit Transfer semimajor axis reaches its maximum 100,000 km. The dif-

Case E is a transfer from a geostationary transfer Or[erence is directly related to the orbit-transfer eneggetin

. ) o . which the plane change with a larger apoapsis radius is pro
bit to a retrograde, Molniya-type orbit, involving a large ey : . .
: . : . -_pellant efficient. The longer flight-time trajectory takesttier
plane change. The maximum-permitted flight time is X . :
. dvantage of the energetics. The top panel of Fig. 16 illus-
300 days. Figure 14 shows the trade-off between propel: : . )
) . : tfrates the time history of propellant usage during the trans
lant mass and flight time for this transfer. The Pareto fron ; . . ;
. i . . : er. The shortest-flight-time trajectory uses propellainhw
for the nominal Q-law is obtained with varying.,, € . ! . .
- an almost constant rate. The longer-flight-time trajeesori
[0,1] and the initial true anomaly, < [0,2n]. Three : . X
) L use propellant with a lower rate during the first stage of the
Pareto fronts are generated with GA optimization as fOI_semima'or axis increase followed by a hiaher rate of propel
lows: the first Pareto front (GA-Q-law 1) by optimizing ) y 9 prop

(W, W, W, W.,, Wo). the second Pareto front (GA Q-law lant consumption in the second stage of the plane change.
II) by optimizing {W,, W, W;, W,,, Wa, m,n, 1, fjeut, 6 },
and the third Pareto front (GA Q-law Ill) by optimizing
{Wa, We, Wi, Wy, Wa, m, 0,7, eut, 05, Wp, Tpmin, k}. The  The computation time required to obtain the Pareto front for
GA optimized Q-law provides a better estimation of theeach orbit transfer is listed in Table 2. The computer used
Pareto front than the nominal Q-law for all the flight times for the GA calculation is a 32 node Beowulf cluster with
considered. A propellant mass savings as large as 30% &B06 GHz Pentium 4 microprocessor, while the computer
obtained with the GA optimized Q-law. Like Case D, GA used for the SA calculation is a 31 node Beowulf cluster with
Q-law Il and GA Q-law Il outperform GA Q-law I in this 800 MHz Pentium Il microprocessor. In the GA calcula-
case, while the difference between GA Q-law Il and Il is in- tion, Case C requires a relatively short computation time be
significant. This result reflects the degree of influence ohea cause the evaluation of each Q-law takes less time due to the
Q-law parameter on the Q-law performance. The differencahort flight time in this orbit transfer. Beside Case C, the re
between GA Q-law I and GA Q-law II (or Ill) becomes larger quired computation time is between 11.8 to 41.3 CPU hours.
as the flight time increases in contrast to Case D. For Case A, B, and C, the GA computation evaluates 10,000
sets of Q-law parameters, while for Case D and E it evalu-
The optimal Q-law parameters found with GA are plottedates 20,000 sets of Q-law parameters. Therefore, the time to
with respect to the flight time in Figure 15. The overall distr evaluate one set of Q-law parameters (equivalently to nbtai
bution of the optimal Q-law parameters shows the greater sera candidate trajectory and to assign its fitness) is only abou
sitivity of the Q-law performance toW,,, W, W;, Wq, Ncut } 0.001 CPU hours ( 0.1 minutes) on average.
than to {m,n,r, Wy, 7,min, k}. The optimalr..; shows a
strong correlation with flight time as was found for other In addition to the efficient evaluation of candidate Q-
transfers. A strong preference for the relative size himar laws/trajectories, GA and SA are amenable to a parallel
W, > Wo > W, > W, > W, is observed for all flight computing implementation thanks to the independent eval-
times. uation of each candidate Q-law/trajectory in the popula-
tion/ensemble. The parallel computation significantly re-
Case E specifies changes in all orbit elements, making iluces the wall-clock time for a given computational load:. Fo
the most complicated transfer among the five transfers stuahis work, the GA computation was performed on 10 proces-
ied here. We examine how the change of each orbit elesors in parallel, thus requiring a wall-clock time that iseon

Computational Requirement
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mass and orbit elements astéofuaf time for four Pareto-optimal trajectories
II. The solid line ig tihajectory with flight time 60 days, the dashed line is the

trajectory with flight time 156 days, the line with x symbage trajectory with flight time 275 days, and the line witrclgs
is the trajectory with flight time 482 days. As a general pattéhe trajectory with a longer flight time involves a larghiange
of the semimajor axisa) and a later change of the inclinatiot) &nd the argument of the periapsis (
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Table 2. Computation times required to obtain a Pareto  needed in the early stages of mission design, where many
front with the Q-law optimized with GA and SA foreach  hossible scenarios are considered. Our method offers both
orbit transfer. SA computation was performed in a single the high optimization quality and the high computational ef
processor, while GA computation was performed onten ficiency. The trajectory quality of our method is shown to be
processors in parallel and thus required wall-clock tim& th 55 good as that of other state-of-the-art optimizationstool
is one tenth the listed computation time. Our method yields not only a few Pareto-optimal trajecto-
ries but also an accurate Pareto front for a given orbit feains
within a few hours of computation time. The computational
efficiency arises from both the efficiency of the Q-law in ob-

Orbit Transfer Computation Time (CPU hours) o . : .
Case GA SA taining a candidate trajectory and the natural parallelism
A 118 55 GAJ/SA computation in evaluating a population/ensemble of
B 13.3 225 candidate Q-laws/trajectories.
C 1.0 44.3
D 25 8 68.9 6. ACKNOWLEDGMENTS
E 41.3 38.0 The authors thank Christoph Adami, Van Dang, and Didier

Keymeulen for useful discussions. This work was performed
at the Jet Propulsion Laboratory, California Institute e€f-
nology under a contract with the National Aeronautics and
tenth of the computation time listed in Table 2. It is the shor Space Administration. The research was Supported by JPl’s
wall-clock time (1.2 — 4.1 hours) that makes our optimizatio R&TD program. This work is a part of the large effort by the
method attractive as a guiding tool for the early stage of mis JpL’s Evolvable Computation Group to develop evolution-
sion design where many possible scenarios need to be evalgry computational techniques to design and optimize comple

ated. Itis important to note that our method produces a ®aretspace systems and thus to improve on human-design of space
front (i.e., a group of Pareto-optimal solutions) withineaf  systems [18].

hours, while other optimization algorithms tend to require
similar amount of computational time as well as some user 7. APPENDI X
interaction to acquire just a single Pareto-optimal tri@pc

The Mystic solutions of Case C each typically took betwee
6 and 24 hours to run (although one took about a week), angXPressed as
the Mystic solution of Case D took about a half day [4] [16].

rMathematically, a multi-objective optimization problem i

minimize y = {y1(x), -, yu(x)} €Y, (A1)
5. CONCLUSIONS where x = {x1,---,2n} € X, (A.2)

For the design and optimization of trajectories poweredyngx is the N dimensional decision vectay, the M dimen-

by low-thrust propulsion, we have developed an effica-sional objective vectoiX the decision space, arid the ob-
cious and efficient method to obtain approximate propellanfective space.

and flight-time requirements and Pareto-optimal trajeetor

The method involves a two-level optimization process: i)within the multi-objective optimized problem, a nondomi-
Lyapunov-optimal thrust angles and locations are detegthin pated solution is the solution that is not dominated by any

with the Q-law, ii) the Q-law is optimized with two evo- other feasible solutions. The condition for the solutignto
lutionary algorithms: a genetic algorithm and a simulated-gominatex® is given by [6] [12],

annealing-related algorithm. We have applied our method to

four different types of orbit transfers around the Earthanel Vie{l, -, M}, uy(x?) < yi(xb)

orbit transfer around the asteroid Vesta. The optimizatibn : L (0 (b

the Q-law yields the greatest benefit in the case of the most A FTEdL e M) <m0 (A9)
complex of the five orbit transfers considered, although lesThe second condition ensures tydk?)
complex cases also benefit. The resulting Pareto front with

the optimized Q-law shows a propellant savings as large as REFERENCES
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